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a b s t r a c t 

The nonlinear response of straight, constant cross section of beams is investigated by means of a semi- 

analytical approach. The three dimensional displacement field is approximated, for a given cross section, 

using a FE element discretization on the section combined with a Taylor expansion in the beam axial 

direction. This allows to compute the beam cross section deformation as a function of the stress resultant 

and moment resultant, without the need to solve a three dimensional model, still allowing to account for 

complex three-dimensional constitutive laws. 
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1. Introduction 

The behavior of slender structures is often approximated by

means of so-called beam models. That is, the response of a solid

slender structure of volume V , for which the deformed configu-

ration is defined by the position field x ′ of its material points, is

approximated by describing its configuration with a finite num-

ber of internal degrees of freedom; most often, but not neces-

sarily, these degrees of freedom are the deformed position x ′ of

the points on a reference line, and the parameters defining the

deformed cross section orientation α′ ∈ SO(3), an orthogonal ten-

sor. In a nutshell, one ends up replacing the model of a solid

with the model of a line equipped with some internal structure,

be it the orientation of the beam cross section, as in Fig. 1 , or

the orientation enhanced with some additional parameters, such

as in Vlasov-like models. The model reduction is obtained either

axiomatically, i.e. by postulating the existence of a polar one-

dimensional continuum (see e.g. Pietraszkiewicz and Eremeyev,

2009; Cardona and Geradin, 1988; Merlini and Morandini, 2013 ),

or by projecting the three dimensional equilibrium equations onto

a suitably-chosen set of cross section deformation modes. The first

choice requires the definition of a constitutive law linking the

generalized deformation measures of the reduced model to their

work-conjugated internal actions; the second choice cannot easily

be pursued without choosing beforehand the cross section defor-

mation modes, and thus implicitly defining the generalized con-
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titutive equation that would be needed for the first axiomatic

pproach. 

Whatever choice is taken to reduce the problem dimensional-

ty, the resulting beam model should match as much as possible

he deformation energy of the solid. This is accomplished by

 proper choice of the beam deformation modes. The simplest

hoice is to assume that the cross section do translate without

ny warping and change of dimension; this model, although well

nown, and often used by commercial finite element codes, is

ound to the assumption that the only component of normal

tress is the axial one, S zz , so that one can assume that S zz = E εzz ,

ith E the Young modulus. This kinematic approximation is

cceptable only for homogeneous cross sections. More advanced

pproaches, explicitly accounting for cross section warping, do

ompute the six de Saint–Venant’s polynomial solutions, i.e. the

ix polynomial solutions for axial force, shear-bending along the

wo transverse directions, constant torsion and simple bending

long the two transverse directions. The ensuing six displacement

elds are used to perform the dimensional reduction. Giavotto

t al. (1983) were perhaps the first authors to develop a robust

nd general numerical procedure that allows to compute the

ix polynomial solutions of an arbitrary cross section. After that

ork countless papers were written about the characterization

f beam cross section, mostly following Giavotto et al. (1983) or

erdichevsky (1981) , see also Hodges (2006) ; a slightly different

pproach was adopted in Morandini et al. (2010) and later on in

an and Bauchau (2015a) , both based on an Hamiltonian setting

cfr. Mielke, 1991; Druz et al., 1996; Zubov, 2006; Romanova and

stinov, 2008 ). When dealing with beams loaded by distributed

https://doi.org/10.1016/j.ijsolstr.2019.05.014
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Fig. 1. Beam idealization. 
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t  
orces the Taylor expansion solution for non homogeneous loaded

eams proposed by Ie ̧s an (1976) is worth mentioning, see also

e ̧s an (2008) . A review encompassing many of the published

apers can be found in Chakravarty (2011) . Notable extensions

re the application to curved beams ( Borri et al., 1992; Cesnik,

994 ) and to periodic cross sections ( Han and Bauchau, 2016 ).

dditional internal degrees of freedoms can further be introduced,

elping describing self-equilibrated decaying solutions, that may

e important especially when dealing with open thin-walled

ross sections, see e.g. Garcea et al. (2016) and references therein,

erradi et al. (2016) and, for plasticity, Corre et al. (2018) . 

The variational asymptotic method is based on Berdichevsky’s

ork (e.g. Berdichevsky, 1981 ) and was developed by Hodges and

is co-workers (see e.g. Hodges, 2006 and references therein). It

aturally leads to the characterization of the four cross section

eformation modes that are not function of the cross section

osition along the beam axis, namely axial force, torsion, and

onstant bending along the two transverse directions. The vari-

tional asymptotic method does not easily allow to study what

appens when the shear deformation is different from zero. It is

onetheless possible to perform a second-order approximation and

ompute shear-induced deformations as well, see e.g. Popescu and

odges (20 0 0) . The procedure proposed to account for shear

eformation within the variationally asymptotic method is not

traightforward, to the point that a small theoretical error, unno-

iced for years, was discovered only recently by Yu et al. (2012) ;

nly after fixing that error the results obtained by the variationally

symptotic code were shown to be equal to those obtained by

ollowing Giavotto et al. (1983) . 

Most of the work available in the literature cited so far is

imited to small cross section strain. This does not imply, however,

hat the beam model needs to be limited to small displacements

nd rotations: the section characterizations is performed once for

ll in a co-rotational framework, usually assuming a Green-elastic

aterial. The use of Biot-like work-conjugated beam strain and

nternal action measures allows to correctly account for geometric

tiffness contributions within the beam model. As a matter of fact

t is standard practice in the multibody community to simulate the

ynamics of rotating helicopter blades using the constitutive laws

btained using the above mentioned constitutive approaches. Few

eam cross section characterization papers explicitly deal with

onlinear beam behavior, but are either limited to small-strain and

arge-displacement problems ( Han and Bauchau, 2014 ), to small

ection warping ( Borri and Merlini, 1986 ), or to known section nor-

al stress field, computed from the linear solution ( Merlini, 1988 ).

The variationally asymptotic method has been recently ex-

ended to the nonlinear characterization of beam cross sections

y Jiang and Yu (2015) . Their work is limited to a first-order
symptotic expansion. In other words, it can deal only with con-

tant axial force, torsion and bending. Although the examples pre-

ented by Jiang and Yu (2015) deal only with tension and tor-

ion their formulation leads to correct results for constant bending

oo. An extension to shear-loaded beams has been published by

iang et al. (2018) , but with a formulation that is limited to small

trains. 

Some recent papers deals with cross section elasto-plastic be-

avior of thin-walled beams; almost all of them, however, do

ssume from the beginning a given cross section deformation

eld ( Rigobello et al., 2013 ) and/or that the only component of

ormal stress is the axial one, S zz ( Rezaiee-Pajand and Gharaei-

oghaddam, 2015; Chiorean, 2017 ). These assumptions are well

arranted for thin-walled homogeneous beams, but could lead to

rong results with non-homogeneous cross sections. Specific ap-

roaches are also viable for particular geometries like concrete

teel tubes ( Wang et al., 2014 ). 

The literature lacks a general beam cross section characteriza-

ion method that can deal with arbitrary nonlinear constitutive

aws and account, at the same time, for variable warping fields and

ransverse shear. 

This paper is an attempt to provide a method to approximate

he nonlinear response of an arbitrary beam cross section, while

ccounting for material non-linearities. The degree of the approxi-

ation can be chosen arbitrarily. The proposed approach, although

eneral, has a clear limitation, since it approximates the beam re-

ponse along the axis with a polynomial expansion that is com-

uted as a function of the given beam internal actions only. As

uch, it cannot account for local cross section instabilities, for neck-

ng, or for local effects due to concentrated loads and/or con-

traints. It is clear that, in order to account for these phenom-

na one needs to solve the global beam elastic problem by means

f a beam model enriched with carefully chosen warping func-

ions, that would be work-conjugated to higher order moments of

he cross section stress vector. The proposed approach is thus not

uited for studying thin-walled cross section beams undergoing lo-

al instabilities. Nor it can be used, without modifications, to asses

he actual load-carrying capacity of any given beam if the maxi-

um of the internal actions is reached near a constraint or near

o the point of application of a concentrated load. 

. Beam section kinematics 

Let � = A × R be a right cylindrical beam, where A is the beam

ross section. The beam axis is parallel to the z coordinate. The

osition in the reference and deformed configuration are x and x ′ .
he deformation gradient F = grad ( x ′ ) can be decomposed in two

erms, the first on the section plane, and the second given by its
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vector component along the beam axis, 

F = grad S ( x 
′ ) + x ′ , z � i 

3 
, (1)

where grad S ( x 
′ ) = x ′ , x � i 1 + x ′ , y � i 2 and x ′ ,x , x ′ ,y and x ′ ,z stand for

the partial derivative of x ′ with respect to the coordinate x, y, z ,

respectively. Unit vectors i 1 , i 2 and i 3 are aligned with the chosen

orthogonal reference system, with i 3 parallel to the beam axis. The

Green-Lagrange strain tensor is equal to 

ε = 

1 

2 

(
F T F − I 

)
. 

3. Virtual work principle 

The virtual internal work reads 

δL i = 

∫ 
V 

δε : S d V = 

∫ 
V 

δF : ˆ S d V 

= 

∫ 
V 

δgrad S ( x 
′ ) : ˆ S d V + 

∫ 
V 

δx ′ , z � i : ˆ S d V (2)

with ε = 

1 
2 

(
F T F − I 

)
the Green-Lagrange strain tensor, ˆ S and S the

first and second Piola–Kirchhoff stress tensors, respectively. The

second term of Eq. (2) can be reworked as ∫ 
V 

δx ′ , z � i 
3 

: ˆ S d V = 

∫ 
V 

δx ′ , z · ˆ S · i 
3 
d V = 

∫ 
V 

δx ′ , z · ˆ S · i 
3 
d V 

= 

∫ 
L 

∫ 
A 

δx ′ , z · ˆ S · n̄ d A d z, (3)

with n̄ ≡ i 3 . Eq. (3) can be integrated by part as ∫ 
L 

∫ 
A 

δx ′ , z · ˆ S · n̄ d A d z = 

∫ 
L 

(
d 

d z 

∫ 
A 

δx ′ · ˆ S · n̄ d A 

)
d z −

∫ 
L 

∫ 
A 

δx ′ · ˆ S , z · n̄ d A d z 

= 

[ ∫ 
A 

δx ′ · ˆ S · n̄ d A 

] L 
0 

−
∫ 

L 

∫ 
A 

δx ′ · ˆ S , z · n̄ d A d z 

= 

[ ∫ 
A 

δx ′ · ˆ S · n d A 

] 
L 

+ 

[ ∫ 
A 

δx ′ · ˆ S · n d A 

] 
0 

+ 

−
∫ 

L 

∫ 
A 

δx ′ · ˆ S , z · n̄ d A d z, (4)

here n is the outward-pointing normal of the beam (with refer-

ence to Fig. 2 , n = n̄ for z = L and n = −n̄ for z = 0 ). The internal

work is therefore the sum of three main contributions: a bound-

ary term and two integral terms, the first containing the deriva-

tives along the beam axis, the second the derivatives with respect

to the section plane. The formulation is here limited to end loads,
Fig. 2. Local reference frame on a beam slice. 
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eglecting distributed loads along the beam axis. The virtual work

f the applied external forces is thus equal to 

L e = 

∫ 
A 

δx ′ ( L ) · f ( L ) d A + 

∫ 
A 

δx ′ ( 0 ) · f ( 0 ) d A. (5)

The equilibrium is therefore satisfied if 

−
∫ 

L 

∫ 
A 

δx ′ � n̄ : ˆ S ,z d A d z + 

∫ 
L 

∫ 
A 

δgrad S ( x 
′ ) : ˆ S d A d z 

+ 

[ ∫ 
A 

δx ′ ·
(

ˆ S · n − f 
)
d A 

] 
L 

+ 

[ ∫ 
A 

δx ′ ·
(

ˆ S · n − f 
)
d A 

] 
0 

= 0 . (6)

The first two integrals constitute the global equilibrium equa-

ions, while the last two integrals represent the natural boundary

onditions at the end of the beam, ˆ S · n = f . The equilibrium equa-

ions along the beam is satisfied if ∫ 
A 

δx ′ � n̄ : ˆ S ,z d A + 

∫ 
A 

δgrad S ( x 
′ ) : ˆ S d A = 0 (7)

long the beam. 

The structure of Eq. (7) solutions is well known: six rigid-

ody displacements of the whole beam, the six so-called de Saint–

enant’s solutions, and self-equilibrated displacement fields that,

or small-strain linear elasticity, are exponentially decaying with

espect to z . Note also that for non-linear elasticity one can, in

rinciple, track the evolution of the exponential terms wrt. a load

arameter in order to assess the occurrence of local buckling, see

.g. Merlini (1988) . For small-strain linear elasticity the rigid-body

nd the de Saint–Venant’s displacement fields are polynomial with

espect to z , with the quadratic and cubic terms accounting for

ending and transverse shear, respectively; knowledge of the poly-

omial solutions allows to compute the 6 × 6 beam stiffness matrix

nd to recover the three-dimensional stress field as a function of

he beam internal actions. 

Seeking a closed-form solution of Eq. (7) along the beam with-

ut assuming small strains and/or small section warping can be a

ough problem to solve, especially with non-linear material mod-

ls. It is however possible to locally approximate the solution x ′ 
t z = 0 without limiting the strain magnitude and thus to seek a

isplacement field that locally approximates the three-dimensional

olution. To this end, Eq. (7) is enforced at z = 0 only, and no at-

empt is made to actually solve the differential equation along the

hole beam, thus neglecting whatever boundary conditions could

e imposed at the two beam extremities. This is clearly not suffi-

ient to approximate the solution along the beam. To get a better

pproximation, still solving a problem only at z = 0 , one can con-

ider both Eq. (7) and it subsequent derivatives wrt. z . The first

erivative would read 

−
∫ 

A 

δx ′ ,z � n̄ : ˆ S ,z d A −
∫ 

A 

δx ′ � n̄ : ˆ S ,zz d A 

+ 

∫ 
A 

δ
(
grad S x 

′ )
,z 

: ˆ S d A + 

∫ 
A 

δgrad S x 
′ : ˆ S ,z d A = 0 , (8)

here the derivative δx ′ ,z , always evaluated at z = 0 , appears. Writ-

ng the expression of any subsequent derivative is straightforward. 

The sought displacement field u is approximated around z = 0

s 

 (x, y, z) ≈
N ∑ 

i =0 

1 

i ! 
u i (x, y ) z i , (9)

here the unknown field u i ( x, y ), a function of the cross section

osition only, is the i -th displacement derivative of field u ( x, y, z )

rt. z evaluated at z = 0 . For example, one can adopt a linear ap-

roximation u ≈ u 0 + u 1 z, a quadratic one, u ≈ u 0 + u 1 z + 

1 
2 u 2 z 

2 ,

r even a cubic one, u ≈ u 0 + u 1 z + 

1 
2 u 2 z 

2 + 

1 
6 u 3 z 

3 . A Galerkin

ethod is adopted to solve the problem, with the test function de-

ned by δu = 

∑ N 
i =0 

1 
i ! 
δu i (x, y ) z i , and δu i ( x, y ) resorting to the same

ross-section approximation adopted for the unknown fields u . 
i 
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Eq. (7) , evaluated at z = 0 , does not allow to compute, at the

ame time, all the unknown fields u i . Rather, it suffices to compute

nly the 0-th order term, u 0 . This should not be a surprise, since

he test function δx ′ at z = 0 is nothing but δu 0 alone. In order to

ompute both u 0 and u 1 one needs to account, at the same time,

or Eq. (7) and for Eq. (8) , where the derivative δx ′ , z evaluated at

 = 0 appears. Note that this derivative is equal, for the chosen ap-

roximation Eq. (9) , to δu 1 . Each and every additional term added

o Eq. (9) requires, in turn, an additional derivative of Eq. (7) , with

 corresponding new derivative δ( ∂ i x ′ / ∂z i ) that, after applying the

pproximation Eq. (9) , corresponds to δu i . 

No boundary conditions has been considered so far. To close the

roblem, the set of Eqs. (7) and of its derivatives (i.e. Eqs. (7) and

8) when N = 1 in Eq. (9) ) can be complemented by six equations

hat impose the sought value of the stress resultant t and moment

esultant m at z = 0 together with six additional constraints for the

eam rigid body motions. The sought vectors t and m are imposed

o be equal to the resultant and moment resultant, over the cross-

ection, of the normal stress vector ˆ S · n , i.e. ∫ 
A 

ˆ S · n d A = t , ∫ 
A 

x ′ × ˆ S · n d A = m . (10) 

Eqs. (10) are enforced by using two Lagrange multiplier vec-

ors, λ1 and λ2 . Note that Eqs. (10) involves only the first Piola–

irchhoff stress tensor ˆ S evaluated at z = 0 ; they thus depend ex-

licitly only on the deformation gradient F evaluated at z = 0 , i.e.

n the first two terms of the approximation, u 0 and u 1 . The rigid

ody motion constraints are imposed by forcing to zero the projec-

ion of the cross section displacement u at z = 0 (i.e. u 0 ) onto the

orresponding rigid body displacement fields; that is, ∫ 
A 

u 0 d A = 0 , ∫ 
A 

x × u 0 d A = 0 . (11) 

Eqs. (11) are imposed by using two additional Lagrange multi-

lier vectors, λ3 and λ4 . 

For a linear approximation, N = 1 , the whole set of nonlinear

qs. (7) , (8), (10) and (11) has δu 0 , δu 1 and δλj , with j ∈ [1, 4], as

ndependent test functions, and u 0 , u 1 and λj as unknowns; this

et of equations can be solved as a function of the sought inter-

al actions t and m . No additional constraints, besides those of

qs. (10) and (11) , are required for N ≥ 2. This allows to compute
Fig. 3. Torsion of an elasto-plastic beam; 
he strain and stress distribution at any given beam section as a

unction of the internal actions, regardless of the constitutive law

t hand, be it Cauchy-elastic, hyperelastic, or elasto-plastic. 

A drawback of the proposed approach is that it needs explicit

xpressions for N + 1 derivatives of the first Piola–Kichhoff stress

ensor ˆ S with respect to z . Limiting again the approximation to

he first order, N = 1 , this means ˆ S ,z and 

ˆ S ,zz . This is not a big

ssue for hyperelastic materials, and complicates the matter only

lightly; however, it brings significant additional complexity for

lasto-plastic materials: one needs to compute the first and sec-

nd derivatives of the plastic multiplier in order to compute ˆ S ,z 
nd 

ˆ S ,zz , as detailed in Appendix A for a simple elasto-plastic con-

titutive laws. 

Standard Lagrange elements are used to approximate u i . 

. Validation 

The proposed formulation is validated by comparing its results

ith those of three-dimensional models of the beam at hand. All

he examples are made, without loss of generality, for a 1 m × 1 m

quare cross sections centered at the origin. The two-dimensional

odel is made using cubic triangles with a 10 × 10 subdivision of

he cross section. 

The three-dimensional model used for comparison has a length

f 4 m. The same constraints used for the cross section analysis

re applied to the three dimensional body; that is, the section at

 = 0 m is constrained by the same Eqs. (11) defined for the two-

imensional formulation. This eases the comparison between the

esults of the three dimensional model and of the proposed for-

ulation. The loads definition is a bit more tricky: the three di-

ensional solid needs to be loaded at the two beam extremities,

ar from the middle section at z = 0 m in order to damp out any

ocal effect, in such a way that the middle section reacts with the

ought internal actions t and m . This allows to precisely control the

nternal action of the three dimensional model at z = 0 m. Details

n how this is accomplished can be found in Appendix B . 

The solid mesh is made using cubic tetrahedrons with a

0 × 10 × 20 subdivision of the volume. 

Both the three- and the two-dimensional models’ equations

re solved using Newton–Rhapson; the linearized equations, how-

ver, are rather ill-conditioned for the three-dimensional model,

ossibly because of the highly coupled and nonlinear additional

quations enforcing both the middle cross section internal actions

nd the global equilibrium. Typical deformed shapes of the three-

imensional model are reported, without magnification of the
ε e f f 
p is the equivalent plastic strain. 
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Fig. 4. Shear-bending of an elastic beam. 

Fig. 5. Torsion of a Green-elastic beam: deformed configuration and normal stress 

vector ˆ S · n , m z = 0 . 03 Nm . 
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t  
displacements, in Figs. 3 and 4 . Fig. 3 shows the torsion of an

elasto-plastic beam, and Fig. 4 the combined shear-bending of an

elastic beam; arrows in the cross section represents the first stress

vector ˆ S · n projected onto linear Lagrange vector finite elements. 

All the simulations are performed by leveraging the python in-

terface of Dolfin ( Logg and Wells, 2010; Logg et al., 2012b ), a li-

brary developed within the FEniCS project ( Alnæs et al., 2015; Logg

et al., 2012a ). 
Fig. 6. Torsion of a Green-elastic beam: displacement relative 
Standard third-order Lagrange elements are used for all the ex-

mples; the displacements are not magnified for plotting the de-

ormed shapes. 

All results are obtained, unless otherwise specified, by limiting

he unknown displacement expansion Eq. 9 to a first order approx-

mation, N = 1 . 

.1. Torsion 

The beam is made of an isotropic Green-elastic material,

or which S = 2 με + λε : I � I , with μ = E/ (2(1 + ν)) and λ =
ν/ ((1 + ν)(1 − 2 ν)) , where E = 1 Pa is the Young modulus and

= 0 . 33 is the Poisson coefficient. The sought moment is equal to

 z = 0 . 03 Nm . Fig. 5 shows the cross section deformed shape to-

ether with the first stress vector ˆ S · n projected onto linear La-

range vector finite elements. Fig. 6 compares the norm of the

isplacement difference between the three-dimensional solution

nd the proposed approach for z = 0 m (left figure) and z = 0 . 2 m

right figure), normalized with respect to the maximum displace-

ent norm || u FEM 

|| max = 0 . 023 m and || u FEM 

|| max = 0 . 083 m , re-

pectively; the displacement of the nearby section at z = 0 . 2 m

re approximated, for the proposed approach, as u ≈ u 0 + 0 . 2 u 1 .

ig. 7 plots the relative difference for the cross sections stress

ector norm || ̂ S · n || , normalized with respect to its maximum

alue || ̂ S · n || FEM max = 0 . 15 Pa . 

.1.1. Neo-Hookean material 

Although not immediately evident from the previous results,

he simulation is completely non linear, and can account for
difference, m z = 0 . 03 Nm ; left: z = 0 m ; right: z = 0 . 2 m . 
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Fig. 7. Torsion of a Green-elastic beam: || ̂ S · n || relative difference, m z = 0 . 03 Nm , 

z = 0 m . 
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Fig. 10. Torsion of an elasto-plastic beam: || ̂ S · n || relative difference, m z = 

0 . 009 Nm , z = 0 m . 
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onlinear material behavior as well. Consider the same beam

ade with an isotropic Neo-Hookean material with internal energy

er unit of reference volume w = 

μ
2 (I 1 − 3) + 

K 0 
2 (J − 1) 2 , where

= E/ (2(1 + ν)) , λ = Eν/ ((1 + ν)(1 − 2 ν)) , K 0 = E/ (3(1 − 2 ν)) ,

 = det ( F ) , I 1 = J −2 / 3 ( F T F ) : I , E = 1 Pa and ν = 0 . 33 . To visually

ppreciate the difference with respect to the Green-elastic ma-

erial the sought moment is equal to m z = 0 . 1 Nm , much higher

han that of the previous example, to the point that the three-

imensional code hardly converges. Fig. 8 compares the cross sec-

ion deformed shape x + u 0 obtained with the proposed approach

nd the two different materials, together with the first stress vec-

or ˆ S · n . 

.1.2. Elasto-plastic material 

More interesting, elasto-plastic materials can be accounted for.

he elasto-plastic material of Appendix A.1 is considered, with E
Fig. 8. Torsion of a Green-elastic beam: deformed configuratio

Fig. 9. Torsion of an elasto-plastic beam: displacement relative 
he elastic tensor of a Green-elastic isotropic material, E = 1 Pa

he elastic modulus, ν = 0 . 33 the Poisson coefficient, S 0 = 0 . 01 Pa

he yield stress, H = E t / (1 − E t /E) the hardening parameter and

 t = 0 . 3 Pa the tangent elasto-plastic modulus. Since the beam un-

ergoes significant plastic deformations its stiffness is reduced, and

he results are computed for a moment m z = 0 . 009 Nm . Fig. 9 com-

ares the norm of the displacement difference between the three-

imensional solution and the proposed approach for z = 0 m (left

gure) and z = 0 . 2 m (right figure), normalized with respect

o the maximum displacement norm || u FEM 

|| max = . 021 m and

| u FEM 

|| max = . 074 m , respectively. Fig. 10 reports the relative dif-

erence for the cross sections stress vector norm || ̂ S · n || , normal-

zed with respect to its maximum value || ̂ S · n || FEM max = 0 . 044 Pa ;

nally, Fig. 11 plots the relative equivalent plastic strain difference,

ormalized with respect to its maximum value (εe f f 
p FEM 

) max = 0 . 14 .

ince the plastic strain is null near the cross section torsional
n and normal stress vector ˆ S · n , m z = 0 . 03 Nm , z = 0 m. 

difference, m z = 0 . 009 Nm ; left: z = 0 m ; right: z = 0 . 2 m . 
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Fig. 11. Torsion of an elasto-plastic beam: equivalent plastic strain εe f f 
p relative dif- 

ference, m z = 0 . 009 Nm , z = 0 m . 

Fig. 12. Torsion of an elasto-plastic beam: equivalent plastic strain εe f f 
p , m z = 

0 . 009 Nm , z = 0 m . 

Fig. 13. Torsion of elastic and elasto-plastic beams: shear component ˆ S yn plotted 

along y = 0 m , m z = 0 . 009 Nm , z = 0 m . 
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center, as it should (cfr. also Fig. 12 ), the stress distribution is dif-

ferent from that of a beam made of an elastic material. This is

clear from Fig. 13 , that plots the shear component ˆ S yn along the

line y = 0 m for the Green-elastic and the elasto-plastic beam un-

der the moment m z = 0 . 009 Nm . 

4.1.3. Axial force stiffening 

Since the beam section code is completely nonlinear it is possi-

ble to apply complex internal actions time histories and follow the

cross section deformation throughout. For example, Fig. 14 shows
he effect of first applying a torsional moment m z = 0 . 06 Nm and

hen superposing an axial force t z = 0 . 6 N onto the Green-elastic

eam of Section 4.1 ; the axial force stiffening effect is correctly ac-

ounted for in the simulation, so that the cross section at z = 0 . 2 m

ees a reduced rotation while moving along the beam axis. By pro-

ecting the in-plane components of u 1 onto the rigid mode rotation

ate of the undeformed section, defined as a nonlinear function of

he rotation angle derivative α, z it is possible to compute the ac-

ual value of the rotation derivative α, z and thus to compute the

orsional compliance a , z / m z . Figs. 15 plot the torsional compliance

s a function of the applied moment (left, with null axial force t z )

nd of the axial force resultant t z (right, with constant applied mo-

ent m z = 0 . 06 Nm ). 

.2. Shear-bending 

The test cases of Section 4.1 are characterized by a deforma-

ion field that is constant with respect to the beam axis. This

s not the case when the internal actions have any non zero

orce component in the cross section plane, since the bending

oment varies linearly. The three-dimensional case of Fig. 4 al-

ows to verify the soundness of the proposed approach whenever

he beam deformation varies due to transverse shear. The Green-

lastic beam with E = 1 Pa and ν = 0 . 33 is loaded at z = 0 m with

 y = 0 . 01 N and m x = 0 . 008 Nm . Fig. 16 compares the displacement

eld at z = 0 m and z = 0 . 2 m with that of the three-dimensional

odel; the displacement difference is normalized with respect

o the maximum displacement norm || u FEM 

|| max = 0 . 0081 m and

| u FEM 

|| max = 0 . 015 m , respectively. The displacement difference

ppears to be more significant than that of the torsion cases, es-

ecially at the cross section corners. The relative difference for the

ross sections stress vector || ̂ S · n || , normalized with respect to the

aximum value || ̂ S · n || FEM max = 0 . 051 Pa is less marked, as shown

n Fig. 17 . 

Although the normal stress difference obtained with the linear

pproximation could be judged acceptable, it is nonetheless clear

hat a linear approximation may not be the wisest choice for a

roblem that is known to have, in linear elasticity, a cubic dis-

lacement field wrt. z . Figs. 18 and 19 report the relative difference

btained by choosing a quadratic and cubic approximation for u ,

espectively (i.e. N = 2 and N = 3 in Eq. (9) , with additional un-

nown fields u 2 and u 3 ). It’s clear that increasing the approxima-

ion order reduces the difference wrt. the three-dimensional so-

ution. This, however, has a non-negligible cost, as one needs to

dd to the set of equations the second derivative of Eq. (7) for the

uadratic approximation, and its second and third derivatives for

he cubic approximations. This, in turn, brings the need to compute

he third (quadratic approximation) and fourth (cubic approxima-

ion) derivatives of the normal stress vector, ˆ S ,zzz · n and 

ˆ S ,zzzz · n ,

 rather tedious task. Fig. 20 plots the relative difference for the

ross sections stress vector || ̂ S · n || obtained with the quadratic and

ubic approximations. 

The convergence error of the three-dimensional solution is large

or this specific test case, likely because of the ill-conditioned set

f integral constraints applied at the two beam extremities and at

ts center cross section. Fig. 21 shows the cross section deformed

hape together with the first stress vector ˆ S · n computed for sec-

ion internal actions equal to t y = 0 . 05 N and m x = 0 . 04 Nm , values

hat are not reachable with the three-dimensional formulation. 

.2.1. Elasto-plastic bending 

The same beam, but with the elasto-plastic constitutive law

f Section 4.1.2 is subject to a bending moment m x = 0 . 005 Nm.

hree solutions are considered, obtained using the present formu-

ation with a 50 × 50 mesh of linear elements and a quadratic

pproximation along the beam axis, a 3D finite element model
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Fig. 14. Combined torsion and axial force of an elastic beam; left: deformed section at z = 0 . 2 m , torsion without traction, m z = 0 . 06 Nm , t z = 0 N ; right: deformed section 

at z = 0 . 2 m , torsion and traction, m z = 0 . 06 Nm , t z = 0 . 6 N ; undeformed sections in gray. 

Fig. 15. Combined torsion and axial force of an elastic beam; left: α, z / m z as a function of m z , t z = 0 N ; right: α, z / m z as a function of t z , m z = 0 . 06 Nm . 

Fig. 16. Shear-bending of a Green-elastic beam: displacement relative difference, t y = 0 . 01 N and m x = 0 . 008 Nm ; left: z = 0 m ; right: z = 0 . 2 m . 
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ith a 50 × 50 × 24 mesh with linear elements and an approx-

mate analytical solution where the axial strain is assumed to

e linear with respect to y and a state of axial stress is as-

umed. Fig. 22 (left) compares the y position of the elastic

one boundary, while Fig. 22 (right) reports the bending mo-

ent m x as a function of the estimated beam curvature. The

greement between the three formulations if fairly good for this

imple test case. Fig. 23 reports the norm of ˆ S · i 1 and 

ˆ S · i 2 

tress vectors, that are overlooked by the analytical axial stress

pproximation. 
.2.2. Elasto-plastic shear bending 

Elasto-plastic shear bending can be accounted for as well.

he material data are the same of Sections 4.1.2 and 4.2.1 . The

ross section internal actions are t y = 0 . 006 N and m x = 0 . 0048 Nm .

he solid model has a reduced length of 2 m, since other-

ise the bending moment at one of the two beam extremities

ould likely be too high. A 10 × 10 cubic elements mesh, with

 cubic approximation along the beam axis, is adopted for the

ross section analysis, while the three dimensional model is built

ith a 10 × 10 × 20 cubic elements mesh. Fig. 24 compares the
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Fig. 17. Shear-bending of a Green-elastic beam: || ̂ S · n || relative difference, t y = 

0 . 01 N and m x = 0 . 008 Nm . 
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displacement field at z = 0 m and z = 0 . 2 m with that of the three-

dimensional model; the displacement difference is normalized

with respect to the maximum displacement norm of || u FEM 

|| max =
0 . 014 m and || u FEM 

|| max = 0 . 026 m , respectively. The error in the

displacement is higher than that of the previous test cases; this is

especially true for the predicted displacement at z = 0 . 2 m , where

the relative error peaks at about 20%. Figs. 25 and 26 compares the

displacement norm || u || of the FEM solution and of the proposed

approach for z = 0 m and z = 0 .2 m, respectively. Fig. 27 plots the

relative equivalent plastic strain difference, normalized with re-

spect to its maximum value (εe f f 
p FEM 

) max = 0 . 041 , while Fig. 28 al-

lows to appreciate the actual equivalent plastic deformation field

predicted by the three dimensional FEM solution and by the pro-

posed approach. Fig. 29 reports the cross sections stress vector

|| ̂ S · n || relative error, normalized with respect to the maximum
Fig. 18. Shear-bending of a Green-elastic beam: displacement relative difference, quadra

Fig. 19. Shear-bending of a Green-elastic beam: displacement relative difference, cubi
alue || ̂ S · n || FEM max = 0 . 064 Pa . The maximum error for the equiv-

lent plastic strain reaches about 10%, while the normal stress vec-

or error is kept within 2%. Fig. 30 plots the actual value of the

ross section normal stress vector norm, || ̂ S · n || , obtained with the

EM solution and the proposed approach. Both the equivalent plas-

ic strain and the normal stress vector norm error plots show the

ame spatial trend, with higher plastic deformations in the mid-

le of the cross section, suggesting that the linearization of the

lastic multiplier with respect to z may be the major limiting fac-

or for this test case. Finally, Fig. 31 plots the shear normal stress

omponent ˆ S yz , that is not constant through the cross section

idth. 

. Run time 

The proposed procedure allows to estimate the three dimen-

ional strain and stress fields at a given cross section as a func-

ion of the internal actions. As such, it does not give any infor-

ation about what happens at different cross sections. The in-

ormation provided by a three dimensional model is more com-

rehensive, at the expense of an increased computation time. The

un times of the proposed procedure are not comparable with

hose of complete three dimensional solutions. Having an idea of

he relative computational effort could nonetheless be of some in-

erest. Consider the 1 × 1 × 10 m clamped beam of Fig. 32 , with

 Green-elastic material, elastic modulus E = 1200 Pa and Pois-

on coefficient ν = 0.3. A dead load per unit of reference sur-

ace f is applied in the i 2 direction at the free end of the beam,

f = 10 i 2 Pa . A 10 × 10 × 20 mesh with quadratic elements is first

sed for the three dimensional analysis. After some tuning it

urns out that the fastest three dimensional solution is achieved

y directly applying the whole load and using a conjugate gra-
tic approximation, t y = 0 . 01 N and m x = 0 . 008 Nm ; left: z = 0 m ; right: z = 0 . 2 m . 

c approximation, t y = 0 . 01 N and m x = 0 . 008 Nm ; left: z = 0 m ; right: z = 0 . 2 m . 
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Fig. 20. Shear-bending of a Green-elastic beam: || ̂ S · n || relative difference, t y = 0 . 01 N and m x = 0 . 008 Nm ; left: quadratic approximation; right: cubic approximation. 

Fig. 21. Shear-bending of a Green-elastic beam: deformed configuration and normal 

stress vector ˆ S · n for t y = 0 . 05 N and m x = 0 . 04 Nm . 
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Table 1 

Run time comparison. 

Runtime 

Cross section mesh 3D Linear Quadratic Cubic 

10 × 10 86 s 3.1 s 4.5 s 9.6 s 

20 × 20 2504 s 4.7 s 7.2 s 25.1 s 
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ient linear solver with an incomplete LU factorization as a pre-

onditioner. A finer 20 × 20 × 40 mesh requires at least two load

teps to converge. After computing the three dimensional solu-

ions it is possible to compute the internal actions at the clamped

xtremity, i.e. a shear t y = 10 N together with a moment m x =
Fig. 22. Bending of an elasto-plastic beam, m x = 0 . 005 Nm; left: elastic zone bounda
43 . 6 Nm for the 10 × 10 × 20 mesh and m x = −43 . 5 Nm for the

0 × 20 × 40 mesh; the different bending moment is due to the

act that the finer mesh, being more flexible, bends a little bit

ore, thus reducing the applied force arm in the deformed con-

guration. The computed internal loads are applied to the corre-

ponding 10 × 10 and a 20 × 20 two-dimensional meshes built with

uadratic elements and with linear, quadratic and cubic polyno-

ial approximation in the beam axis direction. All computations

ere performed, with only one process, on the same hardware.

able 1 reports the time spent solving the corresponding non-

inear problems. The significantly higher run time for the finer

esh three dimensional solution allows for an increased resolu-

ion both through the cross section and along the beam axis. How-

ver, the run time ratio with respect to the two dimensional solu-

ion is not proportional to the increase resolution along the beam

xis. 
ry y position; right: bending moment m x as a function of the beam curvature. 
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Fig. 23. Bending of an elasto-plastic beam, m x = 0 . 005 Nm; left: || ̂ S · i 
1 || ; right: || ̂ S · i 

2 || . 

Fig. 24. Shear-bending of an elasto-plastic beam: displacement relative difference, cubic approximation, t y = 0 . 006 N and m x = 0 . 0048 Nm ; left: z = 0 m ; right: z = 0 . 2 m . 

Fig. 25. Shear-bending of an elasto-plastic beam: displacement norm at z = 0 m; left: FEM; right: cubic approximation; t y = 0 . 006 N and m x = 0 . 0048 Nm . 

Fig. 26. Shear-bending of an elasto-plastic beam: displacement norm at z = 0 .2 m; left: FEM; right: cubic approximation; t y = 0 . 006 N and m x = 0 . 0048 Nm . 
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Fig. 27. Shear-bending of an elasto-plastic beam: equivalent plastic strain εe f f 
p rel- 

ative difference, cubic approximation, t y = 0 . 006 N and m x = 0 . 0048 Nm . 
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Fig. 29. Shear-bending of an elasto-plastic beam: || ̂ S · n || relative difference, cubic 

approximation, t y = 0 . 006 N and m x = 0 . 0048 Nm . 
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. Conclusions 

A general procedure for the nonlinear approximate characteri-

ation of beam cross sections is presented. This procedure is in-

pired by the approach proposed by Morandini et al. (2010) and

an and Bauchau (2015a) and extends it to the nonlinear case. The

egree of the polynomial approximation along the beam axis can

e chosen arbitrarily. 

The procedure proposed here makes no assumption whatsoever

n the cross section displacement field. No attempt is made to

atch the deformation of the three-dimensional solid with that

f a beam model. The resulting formulæare, as a consequence, re-

lly simple and almost trivial, although they hide behind them the

eed to derive the stress tensor with respect to the beam axis, a

ather tedious task that luckily can often be delegated to a sym-

olic algebra engine. This simplicity has two consequences, how-

ver. 

The first consequence is that the only meaningful link between

he three dimensional model and the reduced beam model is given

y the internal actions. One can compute the deformation of the

hree dimensional model that allows to achieve some given sec-

ion resultants and moment resultant; it is not possible, how-

ver, to directly compute the cross section stress resultant of the

hree-dimensional model as a function of the beam model gener-

lized strain. The current formulation can thus be useful to esti-

ate the load-carrying capacity of a given cross section far from
Fig. 28. Shear-bending of an elasto-plastic beam: equivalent plastic strain εe f f 
p ;
onstraints and concentrated loads; it can also be used as an in-

erse constitutive law for formulations based on the Hellinger-

eissner principle, such as that proposed by Nukala and White

2004) . 

The second consequence is that the computational effort is

wice that of Jiang and Yu (2015) . This is because Jiang and

u (2015) link the beam model cross section rotation and axial

ranslation to that of the three dimensional solid, and defines the

dditional constant warping as a field that is superposed to this

ection movement in a co-rotational setting. Here, instead, no kine-

atic link is made, nor it is assumed a priori that the cross sec-

ion do rotate and translate; thus, the minimum set of unknowns

s given by the warping field and by its derivative with respect to

he beam axis. If shear deformation was accounted for by Jiang and

u (2015) two unknown fields would have likely been needed in

heir co-rotational setting, with the best results of the present ap-

roach obtained with four unknown fields. 

It should be possible, as a future development, to account for

ome classes of boundary conditions and for distributed loads.

oundary conditions should be enforced by appropriate constraints

pplied to the first term of the expansion, u 0 , while distributed

oads would appear at the right hand side of the nonlinear equa-

ions, see e.g. the works by Masarati (1999 , Appendix E), Lin and

ong (2006) and Han and Bauchau (2015b) . A different line of de-

elopment could be to use the proposed approach for the multi-

evel nonlinear analysis of beams. 
 left: FEM; right: cubic approximation; t y = 0 . 006 N and m x = 0 . 0048 Nm . 
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Fig. 30. Shear-bending of an elasto-plastic beam: || ̂ S · n || ; left: FEM; right: cubic approximation; t y = 0 . 006 N and m x = 0 . 0048 Nm . 

Fig. 31. Shear-bending of an elasto-plastic beam: ˆ S yz ; left: FEM; ri

Fig. 32. Bent beam. 
ght: cubic approximation; t y = 0 . 006 N and m x = 0 . 0048 Nm . 
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A

nce, depending on the actual constitutive law under consideration, the 

i roduct in the following are left unspecified. Let the internal energy at 

c iola–Kirchhoff stress tensor and K = ψ , χ are the thermodynamic forces. 

F c potential, so that − ˙ χ = 

˙ λg , K . The first spatial derivative S , z and K , z of 

t puted as 

(A.1) 

w ive of the plastic multiplier. Assuming to have reached the yield limit 

ondition, 

(A.2) 

w

χ (A.3) 

I

a(︸ (A.4) 

t

λ (A.5) 

s

S

a

K

 derivative wrt. z . The first step is to derive Eq. A.1 

S ε,zz + ψ , εχχ,zz 

K
 χεε,zz + ψ , χχχ,zz (A.6) 

a

χ (A.7) 

z = 0 . (A.8) 

,z 

)

ppendix A. Elasto-plastic constitutive law derivatives 

Consider a constitutive law with internal hidden variables χ. Si

nternal variables can have different ranks, almost all the inner p

onstant temperature be be ψ( ε, χ), so that S = ψ , ε is the second P

unction f ( S , K ) ≤ 0 is the yield function; g ( S , K ) is a convex plasti

he stress tensor S and of the forces K with respect to z can be com

S ,z = ψ , εε : ε,z + ψ , εχχ,z 

K ,z = ψ , χε : ε,z + ψ , χχχ,z 

here χ, z needs to be computed as function of the spatial derivat

f = 0 the spatial derivative of f is, analogously to the consistency c

f , S : S ,z + f , K K ,z = 0 

ith the flow rule leading to 

,z = −g , K λ,z . 

nserting Eqs. (A.1) and (A.3) into Eq. (A.2) leads to 

f , S : ψ , εε : ε,z − f , S : ψ , εχg , K λ,z + f , K ψ , χε : ε,z − f , K ψ , χχg , K λ,z = 0 

nd, after re-arranging the terms 

f , S : ψ , εχ + f , K ψ , χχ

)
g , K 

 ︷︷ ︸ 
A 

λ,z = 

(
f , S : ψ , εε + f , K ψ , χε

)︸ ︷︷ ︸ 
B 

: ε,z 

he derivative of the plastic multiplier can be readily computed as 

,z = 

B 

A 

: ε,z , 

o that the derivative of the stress tensor becomes 

 ,z = 

(
ψ , εε − ψ , εχg , K �

B 

A 

)
: ε,z 

nd the derivative of the forces is 

 ,z = 

(
ψ , χε − ψ , χχg , K �

B 

A 

)
: ε,z . 

The procedure can be repeated in order to compute the second

 ,zz = ψ , εεε( ε,z � ε,z ) + 2 ψ , εεχ

(
ε,z + χ,z 

)
+ ψ , εχχ

(
χ,z � χ,z 

)
+ ψ , εε

 ,zz = ψ , χεε( ε,z � ε,z ) + 2 ψ , χεχ

(
ε,z + χ,z 

)
+ ψ , χχχ

(
χ,z � χ,z 

)
+ ψ ,

nd the flow rule Eq. (A.3) 

,zz = −g , K K K ,z � λ,z − g , K λ,zz − g , K S : S ,z � λ,z . 

The second derivative of the yield function becomes 

f , S S ( S ,z � S ,z ) + 2 f , S K ( S ,z � K ,z ) + f , K K ( K ,z � K ,z ) + f , S S ,zz + f , K K ,z

Inserting Eqs. (A.6) into Eq. (A.8) 

f , S S ( S ,z � S ,z ) + 2 f , S K ( S ,z � K ,z ) + f , K K ( K ,z � K ,z ) 

+ f , S ψ , εεε( ε,z � ε,z ) + 2 f , S ψ , εεχ

(
ε,z � χ,z 

)
+ f , S ψ , εχχ

(
χ,z � χ,z 

)
+ f , S ψ , εεε,zz + f , S ψ , εχχ,zz 

+ f , K ψ , χεε( ε,z � ε,z ) + 2 f , K ψ , χεχ

(
ε,z � χ,z 

)
+ f , K ψ , χχχ

(
χ,z � χ

+ f , K ψ , χεε,zz + f , K ψ , χχχ,zz = 0 
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wing ε, z and λ, z alone, 

 , K ψ , χεε

)
( ε,z � ε,z ) + 

 

ψ , χεχ

)(
ε,z � χ,z 

)
 , χχχ

)(
χ,z � χ,z 

)
⎤ 

⎥ ⎦ 

︷︷ ︸ 
f 1 

χ + f , K ψ , χχ

)︷︷ ︸ 
f χ

χ,zz = 0 

(A.9) 

(A.10) 

ity model based on the additive decomposition of the Green-Lagrange 

 linear hardening. This model is characterized by two different internal 

, that is equal to the plastic multiplier: 

(A.11) 

orces are the opposite of the stress tensor and the increment of yield 

s; with moderately large strains one should resort to the multiplicative 

stic part, F = F e F p (see e.g. Simo and Hughes, 1998 ) or, at least, to a 

adopoulos and Lu, 1998; 2001 ). Using the Green-Lagrange strain tensor 

tation of the model; still, strains must be relatively small in order to get 

mitation, the model has been chosen here because, with its simplicity, 

n not only for hyperelastic constitutive laws, but also for elasto-plastic 

rder tensor B of Eq. (A.4) become 
and collecting together all the terms that can be computed by kno

f , S S ( S ,z � S ,z ) + 2 f , S K ( S ,z � K ,z ) + f , K K ( K ,z � K ,z ) ︸ ︷︷ ︸ 
f 0 

+ 

⎡ 

⎢ ⎣ 

(
f , S ψ , εεε + f

2 

(
f , S ψ , εεχ f , K(

f , S ψ , εχχ f , K ψ︸ 
+ 

(
f , S ψ , εε + f , K ψ , χε

)︸ ︷︷ ︸ 
f ε≡B 

: ε,zz + 

(
f , S ψ , ε︸ 

one gets 

f χχ,zz + B : ε,zz + f 0 + f 1 = 0 . 

Inserting now Eq. (A.7) into Eq. (A.9) leads to 

− f χg , K K K ,z � λ,z − f χg , K S S ,z � λ,z + f 0 + f 1 ︸ ︷︷ ︸ 
f 2 

+ f ε : ε,zz = f χg , K λ,zz , 

from which 

λ,zz = 

f 2 
f χg , K 

+ 

f ε

f χg , K 
: ε,zz . 

A1. Particularization to J2 plasticity 

The formulae of Appendix A become much simpler for a plastic

strain tensor into its elastic and plastic parts, ε = εe + εp and with

variables, i.e. the plastic deformation and the effective plastic strain

χ1 = εp , 

χ2 = εe f f 
p = λ. 

The yield function is given by 

f = 

√ 

3 

2 

s : s − (S 0 + K) = 0 

where s = S − 1 
3 S : I and S 0 + K is the yield equivalent stress. The f

stress 

K 1 = −S , 

K 2 = K. 

The internal energy is given by 

ψ( ε, χ) = 

1 

2 

( ε − εp ) : E : ( ε − εp ) + 

1 

2 

H εe f f 
p εe f f 

p . 

and an associated flow rule is assumed, i.e. f ≡ g . 

As it is well known, this model makes sense only for small strain

decomposition of the deformation gradient into an elastic and pla

constitutive law written as a function of the logarithmic strains ( Pap

and the second Piola–Kirchhoff stress tensor puts no limit to the ro

results matching the behavior of isotropic materials. Despite this li

allows to easily check the effectiveness of the proposed formulatio

materials. 

Following the notation of Appendix A the scalar A and second o

A = 

(
f , S : ψ , εχ + f , K ψ , χχ

)
g , K 

= f , S : E : f , S + H 

= f , S : E : f , S + H, 

B = f , S : ψ , εε + f , K ψ , χε

= f , S : E 

The derivative of the stress tensor is equal to 
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S

(A.12) 

a

b

a

E(

s

λ

f , S : E : ε,zz 

ε

z ) 

 ε,zz 

]

w  ( f , S : E ) /A . Since both E and E ,z = (E − E : f , S � f , S : E ∗ 1 
A 
) have major 

s . The fourth order tensor ˜ A can thus be rewritten as 

A
 

] 
s

S  , εεε,zz + ψ , εχχ,zz 

(A.13) 

 , z of the stress tensor depends only on the first derivative of the strain 

t

A

paring the results obtained with the proposed approach with those 

o o extremities in such a way that the middle section at z = 0 m reacts 

w ads are applied at its two extremity section A and A , with a constant 
 ,z = 

(
E − E : f , S �

B 

A 

)
︸ ︷︷ ︸ 

E ,z 

: ε,z 

= E ,z : ε,z . 

Computing now the coefficients of Eq. (A.9) one gets 

f 0 = f , S S ( S ,z � S ,z ) 

nd 

f 1 = 0 

ecause all the third derivatives of ψ are null. Then, since 

f ε ≡ B 

= f , S : E 

nd 

f χχ,zz = − f , S : E : εp,zz − Hλ,zz 

q. (A.9) becomes 

f , S : E : f , S S : −S ,z λ,z 

+ f 1 + f 0 

)
+ f , S : E : ε,zz 

= − f , S : E : f , S S : S ,z λ,z + f , S S ( S ,z � S ,z ) ︸ ︷︷ ︸ 
f 0 

+ f , S : E : ε,zz 

= ( f , S : E : f , S + H) λ,zz 

o that the second derivative λ, zz of the plastic multiplier is 

,zz = 

− f , S : E : f , S S : S ,z � λ,z + f , S S ( S ,z � S ,z ) ︸ ︷︷ ︸ 
f 0 

+ f , S : E : ε,zz 

( f , S : E : f , S + H) 

= 

− f , S : E : f , S S : E ,z : ε,z �
B 
A 

: ε,z + f , S S � � 
� 

� 

( E ,z : ε,z � E ,z : ε,z ) + 

( f , S : E : f , S + H) 

and 

p,zz = f , S S : S ,z � λ,z + f , S λ,zz = f , S S : E ,z : ε,z �
B 

A 

: ε,z 

+ f , S 
1 

( f , S : E : f , S + H) 

[ (
− f , S : E : f , S S : E ,z �

B 
A 

)
� 

� 

� 

� 

( ε,z � ε,

+ f , S S � � 
� 

� 

( E ,z : ε,z � E ,z : ε,z ) + f , S : E :

= ̃

 A 

� 

� 

� 

� 

( ε,z � ε,z ) + f , S ̃  B : ε,zz , 

here tensor ˜ A collects all the terms that multiply ( ε, z �ε, z ) and 

˜ B =
ymmetry, B = f , S : E = B 

T , A = f , S : E : f , S + H and C = f , S : E = C T 

˜ 
 = f , S S : E ,z �

B 

A 

+ 

f , S 
A 

[ (
− f , S : E : f , S S : E ,z �

B 

A 

)
+ E ,z : f , S S : E ,z

o that 

 ,zz = ψ , εεε( ε,z � ε,z ) + 2 ψ , εεχ

(
ε,z + χ,z 

)
+ ψ , εχχ

(
χ,z � χ,z 

)
+ ψ

= E : ( ε,zz − εp,zz ) 

= 

(
E − E : f , S � ˜ B 

)
: ε,zz − E : ˜ A 

� 

� 

� 

� 

( ε,z � ε,z ) . 

Eqs. (A.12) and (A.13) make clear that, while the first derivative S

ensor, the second derivative S , zz is a function of both ε, z and ε, zz . 

ppendix B. Three-dimensional solid loads 

As explained in Section 4 the validation is performed by com

btained with a three dimensional model that is loaded at its tw

ith the sought internal actions t and m . To this end, distributed lo
 1 2 
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rly varying normal contributions (proportional to λM 1 1 
and λM 1 2 

on A 1 , 

roportional to λM 1 3 
on A 1 and λM 2 3 

on A 2 ): 

t  x 1 λM 1 2 ) , 

t  x 1 λM 2 2 ) . 

twelve equations. The first six equations states that the resultant of the 

e stress resultant t and that the moment resultant of the same loads, 

oment resultant m : 

ment resultant of the external loads must be null: 

material is reported below. Note that dealing with elasto-plastic ma- 

 deal with the stress evaluated at different integration points and to 

-solid-mechanics library, currently available from https://bitbucket.org/ 

extended with the formulæ of Appendix A.1 . More in detail (see e.g. 

or an introduction to the Unified Form Laguage UFL, the Fenics Form 

abstraction for fields that can be evaluated only at integration points, 

built starting from this abstraction, in such a way that their instances 

 compiler. The first one, called UFLQuadratureFunction , allows to 

on points of any given element; this is used for computing the Green- 

on points. The second one, called QuadratureFunction , is used to 

 tangent moduli, as computed by the return mapping procedure. The 

riables, such as the plastic strain εp , both for the current and the last 

iven element, the value of any of these QuadratureFunction class 

ed, the current values of the HistoryData variables are updated, and 

g of results allows to avoid repetitive calls, at the element level, of the 
contribution ( λF 1 
on A 1 and λF 2 

on A 2 ) added to two follower linea

λM 2 1 
and λM 2 2 

on A 2 ) and to a follower torsion-like contribution (p

 A 1 = λF 1 + 

( 

F −T i 
2 ∥∥F −T i 
2 
∥∥x 1 − F −T i 

1 ∥∥F −T i 
1 
∥∥x 2 

) 

λM 1 3 + 

F −T i 
3 ∥∥F −T i 
3 
∥∥ (x 2 λM 1 1 +

 A 2 = λF 2 + 

( 

F −T i 
2 ∥∥F −T i 
2 
∥∥x 1 − F −T i 

1 ∥∥F −T i 
1 
∥∥x 2 

) 

λM 2 3 + 

F −T i 
3 ∥∥F −T i 
3 
∥∥ (x 2 λM 2 1 +

The values of vectors λF (1 , 2) 
and λM (1 , 2) 

are computed by imposing 

loads on one of the two faces must be equal to sought value of th

computed with respect to the origin, must be equal to the sough m∫ 
A 1 

t A 1 d A = t , ∫ 
A 1 

x × t A 1 d A = m . 

The missing six equations impose that the overall resultant and mo∫ 
A 1 

t A 1 d A + 

∫ 
A 2 

t A 2 d A = 0 , ∫ 
A 1 

x × t A 1 d A + 

∫ 
A 2 

x × t A 2 d A = 0 . 

Appendix C. Implementation 

A reference implementation for the Neo-Hookean hyperelastic 

terials is significantly harder in Dolfin, since one has to explicitly

write his own code for the return mapping; to this end, the fenics

fenics-apps/fenics-solid-mechanics/src/master/ , was modified and 

Logg and Wells (2010) ; Logg et al. (2012b) ; Alnæs et al. (2014) f

Compiler FFC and, more generally, to Dolfin), Dolfin provides an 

the so-called Quadrature elements. Three additional classes are 

can be used within an UFL form and understood by the FFC form

evaluate the values of an arbitrary UFL expression at the integrati

Lagrange strain tensor ε and its derivatives wrt. z at the integrati

return the stress tensor, its derivatives wrt. z and all the required

third one, HistoryData , is used to store the values of hidden va

converged load step. Whenever the form assembly requires, for a g

instances, a standard hand-coded return mapping procedure is call

the computed values are returned to the calling procedure. Cachin

return mapping procedure. 

https://bitbucket.org/fenics-apps/fenics-solid-mechanics/src/master/
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